IMPORTANT BATTERY FACTS for today’s HEARING INSTRUMENTS

There are many factors that affect how long a hearing aid battery lasts.

1. An individual’s hearing loss
 As severity increases...

2. The battery size
 As the physical size of the batteries decrease, the amount of ingredients needed to power the battery also decreases, making the battery life shorter for smaller batteries and longer for bigger batteries.

3. An individual’s hearing aid usage
 2 things to take into account:

4. Instrument Differences
 Features in today’s digital instruments, like:
 - **Premium Features**
 - FM (looping)
 - Generation of sound with tinnitus patients
 - **Wireless / Bluetooth Features**
 - **OEM Settings**
 - Low battery warnings can result in perceived short life.
 - **Noise cancellation**
 - **Multi-channel processing**
 May reduce battery life by 20%
 - **With and without interface units**
 When in use, can increase the current up to 300%, further reducing battery life.
Factors that affect battery life (cont.)

Environment

Low Humidity
As humidity is reduced...

- Batteries may dry out, reducing the battery life.
- This can be an issue if:
 - Users are indoors during winter months in northern climates
 - Use of wood burning to heat homes
 - Keeping battery in dry aid kits in an already dry environment
 - Intermittent user
 - If normal service life is more than 7 days

High Humidity
As humidity increases...

- Batteries may take on moisture, interfering with the natural discharge expansion, resulting in swelling/leakage and reducing battery life.
- This can be an issue if:
 - Users work outdoors for extended periods in high temp/high humidity areas.
 - Live in a non air conditioned environment in high humidity areas
 - Intermittent user
 - If normal service life is more than 7 days

Temperature
As temperature is reduced...

- Hearing aid battery voltage is lowered and reaches functional endpoint earlier, reducing battery life.
- This can be an issue if individuals are working outside in the winter or in a refrigerated environment.

Altitude
As altitude increases...

- Percentage of Oxygen level in the air is reduced, lowering the hearing aid battery voltage, causing the battery to reach the endpoint earlier and reduces battery life.
- This can be an issue if:
 - Individuals live in areas at high altitude
 - Flying in a plane when battery is late in discharge

Expected Ranges of Battery Life

<table>
<thead>
<tr>
<th>Battery Size</th>
<th>Life Expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3-10 days</td>
</tr>
<tr>
<td>312</td>
<td>3-12 days</td>
</tr>
<tr>
<td>13</td>
<td>6-14 days</td>
</tr>
<tr>
<td>675</td>
<td>9-20 days</td>
</tr>
</tbody>
</table>

*Cochlear implant devices normally require a specially formulated battery and they may last as little as one day.

The Bottom Line...

There is no one answer that is going to work for all hearing aid wearers. The best way for a patient to understand the battery life that they can expect, is to benchmark their individual battery performance over time.